USN

M.Tech. Degree Examination, December 2011 **Linear Algebra**

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. If A is an $m \times n$ matrix and m < n, then prove that the homogeneous system of linear equations AX = 0 has a non-trivial solution. (04 Marks)
 - b. Find for all values of 'k' the system of equations

$$x + y + z = 1$$

 $x + 2y + 4z = k$
 $x + 4y + 10z = k^2$

posseses a solution. Solve completely in each case.

(08 Marks)

c. Solve the system of equations

$$x_1 + 2x_2 + x_3 = 0$$

 $2x_1 + 2x_2 + 3x_3 = 3$
 $-x_1 - 3x_2 = 2$
by LU – factorization with $u_{ii} = 1$.

(08 Marks)

- 2 a. Prove that a non empty subset W is a subspace of a vector space V over F, if and only if $a\alpha + b\beta \in W \ \forall \alpha, \beta \in W \ \text{and } a, b \in F.$ (07 Marks)
 - b. If W_1 and W_2 are subspaces of the vector space V(F) then show that show that $W_1 + W_2$ is a subspace of V(F).
 - c. Show that the set $S = \{(1, 0, 1), (1, 1, 0), (-1, 0, -1)\}$ is linearly dependent in $V_3(R)$.
- 3 a. Show that the set $B = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ is a basis of the vector space $V_3(R)$. (04 Marks)
 - b. Show that a mapping $T:U\to V$ from the vector space U(F) in V(F) is a linear transformation iff $T(c_1\alpha+c_2\beta)=c_1\ T(\alpha)+c_2\ T(\beta)\ \forall c_1,\,c_2\in F \text{ and }\alpha,\,\beta\in U.$ (06 Marks)
 - c. If $T: U \rightarrow V$ is linear transformation, then, show that
 - i) T(0) = O' where O and O' are zero vectors of U and V respectively
 - ii) $T(-\alpha) = -T(\alpha) \forall \alpha \in U$

iii)
$$T(c_1\alpha_1 + c_2\alpha_2 + \ldots + c_n\alpha_n) = c_1T(\alpha_1) + c_2T(\alpha_2) + \ldots + c_nT(\alpha_n)$$

iv)
$$T(\alpha - \beta) = T(\alpha) - T(\beta)$$
. (10 Marks)

4 a. Give the matrix $A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 0 \end{pmatrix}$ determine the linear transformation $T: V_3(R) \to V_2(R)$ and

relative to the bases B1 and B2 given by

i) B_1 and B_2 are the standered bases of $V_3(R)$ and $V_2(R)$ respectively

ii)
$$B_1 = \{(1, 1, 1), (1, 2, 3), (1, 0, 0) \\ B_2 = \{(1, 1), (1, -1)\}.$$
 (10 Marks)

b. State and prove the Rank – nullity theorem.

- 5 a. If T: V → W be a non singular linear mapping, then prove that T⁻¹: W → V is linear and bijective. (06 Marks)
 - b. Prove that every vector space V over the real field R of dimension n is isomorphic V_n(R).

 (08 Marks)
 - c. If T_1 and T_2 be linear operators on R^2 defined as follows $T_1(x_1, x_2) = (x_2, x_1)$, $T_2(x_1, x_2) = (x_1, 0)$ then show that. $T_1T_2 \neq T_2T_1$. (06 Marks)
- 6 a. If T be a linear operator on $V_3(R)$ defined by $T(a, b, c) = (3a, a b, 2a + b + c) \forall a, b, c, \in V_3(R)$ then prove that $(T^2 I)(T 3I) = 0$. (10 Marks
 - b. Let T be a linear operator on a finite dimensional vector space V. If f is the characteristics polynomial for T, then f(T) = 0; in other words, the minimal polynomial divides the characteristic polynomial for T. (10 Marks)
- 7 a. Define inner product space. Then show that $u = (u_1, u_2)$, $v = (v_1, v_2)$ in \mathbb{R}^2 defined by $\langle u, v \rangle = 4u_1v_1 + 5u_2v_2$ is inner product space. (07 Marks)
 - b. $S = \{u_1, u_2, \ldots, u_p\}$ is an orthogonal set of non zero vectors in \mathbb{R}^n . Then show that S is linearly independent and hence is a basis for the subspace spanned by S. (08 Marks)
 - c. Find and QR factorization of

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$
 (05 Marks)

- 8 a. Convert the quadratic form $Q(x) = x_1^2 8x_1x_2 5x_2^2$ in to a quadratic form with no cross product. (10 Marks)
 - b. Find the maximum value of $Q(x) = 5x_1^2 + 6x_2^2 + 7x_3^2 + 4x_1x_2 4x_1x_3$ subjected to constrain $x^T x = 1$. (10 Marks)

* * * * *